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Abstract 

Adequate recognition of offshore wind energy potential may have far-reaching 

influence on the development of future energy strategies. This study aims to 

investigate available offshore wind energy resource in China’s exclusive 

economic zones (EEZs) with the aid of a Geographical Information System 

(GIS), which allows the influence of technical, spatial and economic 

constraints on raw offshore wind potential being reflected in a continuous 

space. Firstly, based on ocean wind speed data gained from satellite 

QuikSCAT, raw potential are identified. Those findings are then used along 

with projections of current wind turbine technology development to calculate 

the maximum amount of offshore wind energy that could be generated. 

Secondly, to calculate practical potential, the migratory path of an endangered 

bird and existing shipping lanes and submarine cables are excluded from the 

calculated technical potential. 4km, 8km and 12km buffer to coast are 

repsectively applied to avoid annoying visual impacts for coastal zones from 

offshore wind farms. Thirdly, a GIS based cost model for bottom-mounted 

offshore wind energy farms is established. Levelised production cost is 

calculated and showed across wide regions, and sensitivity analysis is 

conducted to reflect how various factors influence cost of energy. The results 

of the study can serve as a foundation for future policy-making. More detailed 

assessments at regional or local scale are needed for decisions on developing 

offshore wind farms.  

 

Keywords: offshore wind potential; constraints; cost; GIS; China 

Introduction 

Along with fast economic growth of nearly 10% per year and improvement of 

people’s living standards, China’s energy use has increased sharply during the 

last three decades. Annual consumption has grown at an average annual rate of 

12.6%, reaching 21,631TWh in 2006 (Energy Information Administration, 

2007). Annual generation has increased at an average of 9.5% in this period, to 

19,852TWh in 2006 (Energy Information Administration, 2007). While China 

is the second largest generator of electricity in the world, with installed 
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capacity of 518GW in 2006, per capita consumption in 2006 was only 

1930kWh, less than 25% of average level in developed countries (International 

Energy Agency, 2007). What makes China’s situation particularly challenging, 

however, is the coal-intensive nature of its energy mix. While coal represents 

about 30% of primary energy consumption worldwide, it represents 70% for 

primary energy consumption and 77% of total power generation in China (BP 

Statistical Review of World Energy, 2007). Coal use is expected to keep pace 

with increased power needs in the next couple of decades, reaching 950GW of 

capacity and 16,794TWh of generation by the year 2030(International Energy 

Outlook, 2009).  

China’s large population of 1.32 billion combined with its dependence on coal 

results in a significant contribution to world CO2 emissions. Its CO2 emissions 

in 2006 were 6.1 billion metric tons, about 21.5% of the world total. If current 

energy use and economic trends continue, various studies have projected that 

carbon emissions in the year 2030 will reach 9.3 billion metric tons. By that 

year annual world emissions are estimated to be 18 billion Metric tons 

(International Energy Outlook, 2009).  

 

An increasing energy demand, worries about energy security and 

environmental pressure has compelled the Chinese government to focus on 

developing renewable energy alternatives. Wind power is deemed to be one of 

the most cost-effective energy supply options, less expensive than incremental 

hydropower, nuclear power or photovoltaics (Lew, 2000). China’s wind 

resources are world-class, with many sites of class 5(>6m/s), and the total 

potential of wind power is about 1000GW. A booming onshore wind energy 

market in China has came into being since the enactment of the nation’s 

renewable energy law on Jan.1, 2006 and 11th Five-Year Plan which attaches 

great importance on wind energy. China’s onshore wind energy has been 

growing at a breakneck pace, with installed capacity doubling each year during 

the past four years. In 2009, it was the world’s largest market, raising its wind 

generation capacity from 12.1GW in 2008 to 25.1 GW at the end of 

2009(Global Wind Energy Council, 2010). However, spatial mismatch 

between onshore wind resource and load center will caused great losses of 

electricity by long distance transmission.  

 

Offshore wind power, though about 50% more expensive than onshore wind, is 

too energy advantageous to be ignored. Three-quarters of China’s wind 

resources locate offshore, which is roughly estimated to be 750GW at 10 

meter’s height. Because wind speeds typically increase with height above the 

ground, the total electrical potential could be 1.7 times of this figure at a 

modern turbine hub height of 90m. Furthermore, coastal wind resources have 

very good economic prospects. With the nation’s 40% population, the coastal 

area is the most developed area in China and also the largest consuming market 

for electricity. Because local coal resources are scarce, coal must be 

transported to the region via railway. This strains an already overburdened 

transport system, where coal already uses 40% of the rail capacity in the 

country (Fang et al., 1998). Hydropower is currently transmitted to this region 
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from the west, and there is good complementarity between the wind and hydro 

resources. Monsoon winds, generally confined to the islands and a strip of land 

several tens of kilometers wide along the coastline, often complement 

hydropower production, because the winds are greatest during the dry season 

when hydro can only produce 20-25% of its capacity (Shen, 1995). The first 

Chinese offshore wind farm in Shanghai Donghai Bridge consists of 34 wind 

turbines with single installed capacity of 3 MW and is expected to be in 

operation by May 2010. Further ambitious plans to build more offshore wind 

farms are proposed in the coastal provinces of Jiangsu, Zhejiang, Fujian, 

Guangdong and Shandong. It is estimated that Jiangsu province will establish 

offshore wind farms with the total capacity of 7GW and Zhejiang province of 

2.7GW by the year of 2020.  

 

Resource and economic assessment is the prerequisite of exploitation and 

utilization. The study of geographical distribution of wind speeds, 

characteristic parameters of the wind, topography and local wind flow and 

measurement of the wind speed are very essential in wind resource assessment 

for successful application of wind turbines. By using the MesoMap software, 

which require a variety of geographical and meteorological inputs, Manwell et 

al. (2007) assess the wind energy resource off the coast of southern New 

England in the United States. Recently more researchers are not satisfied with 

resource assessment, but turn to available offshore wind potential in a practical 

way. Wind resource is combined with a specific technology and a number of 

local constraints, such as ecology and conflicts of interest with other users 

(Henderson et al., 2003; Pimenta et al., 2008; Yue & Yang, 2009). In one of 

EEA’s reports (EEA, 2009), the raw potential, constrained potential and 

economically competitive potential of local wind resources across Europe in 

2020 and 2030 are calculated, which confirms that wind energy can play a 

major role in achieving the European renewable energy targets. What’s more, 

the Intelligent Energy Europe project Windspeed (Jacquemin et al., 2009) has 

developed a methodology to estimate the cost of wind energy over the North 

Sea. A handful of studies focus on the resource assessment in a specific region 

of China (Li, 2000; Elliott et al., 2002; Zhou, 2006), however, there is little 

knowledge of offshore wind potential over large extensional areas. 

 

This paper aims to assess the amount of China’s offshore wind potential from 

the perspective of current technical, spatial and economic constraints, the 

suitable sites for future offshore wind farms and its possible contribution to the 

nation’s energy system, all of which provide macroscopic information for 

policy-makers and investors as a basis for decision-making. For investment of 

offshore wind farms on a specific site, detailed investigations of local wind 

data and topography conditions would be necessary in order to ensure 

investment effectiveness. Such an investigation goes beyond the scope of this 

study. With the aid of Geographic Information System, offshore wind energy 

resources are evaluated according to QuikSCAT ocean wind L2B12 data from 

September 1999 to September 2009. The ocean boundary of this study is the 

Exclusive Economic Zones (EEZs) of the People’s Republic of China. Article 

3 of the United Nations Convention on the Law of the Sea (UNCLOS) states 
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that the People’s Republic of China exercises its sovereign rights over the 

Exclusive Economic Zone for the purpose of exploring, exploiting, conserving 

and managing the natural resources of the waters superjacent to the sea-bed and 

of the sea-bed and its subsoil, and in its other activities for economic 

exploitation and exploration of the zone, such as production of energy from 

water, currents and winds.  

 

Methodology 

Offshore wind energy 

The technological potential of offshore wind power within China’s EEZs is 

calculated by the following steps: 

 Assume a 600MW offshore wind farm which consists of 120 turbines 

with single installed capacity of 5MW. The rotor diameter and hub 

height of a 5M turbine are 126m and 90m respectively, based on the 

prototype of Repower Systems 5MW. A power coefficient (Cp) of 44% 

is set. 

 The layout of the offshore wind farm considers radial network solutions, 

with 8 turbines a row and 15 turbines a column. The distance between 

wind turbines are set to 8 times the rotor diameter, which is suggested 

as optimum array (Nielsen, 2003). Besides, 20km buffer between wind 

farms is assumed in order to reduce wake effects. Therefore, array 

density of turbines is 0.24MW/ km
2
 in China’s EEZs. 

 Measured wind speed at 10m’s height is converted to that of the hub 

height according to the classic log law, as given in formula (1). 
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where v1 equals to wind velocity at the lower height; v2 equals to wind 

velocity at desired hub height of 90m; Z0 represents ocean surface 

roughness, here we assume a constant sea level roughness of 0.2mm 

(Frank, 2006). Z1 equals to lower height in m, and Z2 equals to upper 

height in m. 

 With the help of WindPro software, we get corresponding wind energy 

density (Pd) in kWh/m
2
. 

 Here we estimate the availability coefficient (CA) as 90%. 

 Annual energy output from a single turbine (P, kWh) can be calculated 

with the following expression: 

2

4
DPCCP dpA


                                                                                      (2) 

 The total area of China’s EEZs is about 877,019km
2
. Based on the 

number of turbines which can be installed and annual energy output 

from a single turbine, the total technical potential of offshore wind 

power can therefore be calculated. 
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Levelised energy cost 

The levelised production cost (LPC) is the cost of one production unit (kWh) 

averaged over the wind power station’s entire expected lifetime. The total 

utilized energy output and the total costs over the lifetime of the wind turbine 

are both discounted to the start of operation by means of the chosen discount 

rate, and the LPC is derived as the ratio of the total discounted cost and the 

total discounted utilized energy (Tande & Hunter, 1994). Assuming the annual 

utilized energy to be constant from year to year, the LPC can be calculated as 

(Tande & Hunter, 1994): 

       E

OM

aE

I
LPC                                                                                        (3) 

where I is the total initial capital cost in €/km
2
, E represents annual energy 

output in kWh/km
2
, and OM represents annual operation and maintenance cost 

in €/km
2
.  

       

 
i

i
a

n



11

                                                                                          
(4)

 

where i is the interest rate and n represents the expected lifetime of the project. 

It is important to point out that our calculations of the LPC are based under the 

following assumptions:  

 Investment cost was broken down into turbine cost, foundation cost, 

grid cost and other. 

 A 20 year technical and economic lifetime is assumed. 

 According to international studies of electricity generation costs (NEA 

& IEA, 2005), 5% annual discount rate is adopted.  

GIS-based cost model 

A great number of factors might have influence on the total cost of offshore 

wind farms. Some are geographically-related such as sea depth and distance to 

shore, while others are irrelevant of spatial parameters such as equipment costs. 

Two principles are applied in the GIS-based cost model: spatial parameters 

play an important role in deciding the total cost of offshore wind energy; while 

other geographically-irrelevant costs are deemed as fixed costs.   

 The unit cost of a 5MW turbine model has been estimated at 

0.8M€/MW. 

 Among many factors such as sea depth, soil and wave conditions that 

influence the choice of a foundation type, sea depth shows a close 

correlation with foundation cost. Acceptable depths for offshore wind 

farms are divided into four categories: ≤5m depth for concrete gravity 

structures, ≤20m depth for monopole structures, ≤50m depth for 

jacket structures, and ≤200m depth for floating support structures 

(Henderson et al., 2003; Dvorak et al., 2010; Dhanju et al., 2008). 

According to empirical data from existing offshore wind farms, 

foundation cost in €/MW/km2 was described as a function of sea depth 

and array density.  
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            where If represents the foundation cost in €/MW/km
2
, d represents the      

            sea  depth in m, and ρ represents the array density of turbines. The      

            correlation coefficient reaches 0.976.             

 A comprehensive electrical system between the offshore wind turbines 

and the onshore transmission system usually consist of internal cabling, 

export cabling and substation. The cost of internal cabling is basically 

determined by the layout of wind farm, while cost of export cabling 

relies largely on the distance to shore. Substation cost is deemed as 

fixed cost as well. Based on the empirical data of AC system 

(Jacquemin et al., 2009) and above assumptions for layout of 600MW 

offshore wind farm, a cost-weighted distance function was developed, 

which help finding the least cost by optimal cabling routes. 

600/)(  fllssg cdcdcI                                                                        (6) 

where Ig represents the grid cost in M€/MW/km
2
, cs represents the cost 

of subsea cables with a fixed value of 0.84M€/km, ds represents the 

least subsea cost distance, cl represents the cost of land cables with a 

fixed value of 0.48M€/km, dl represents the least land cost distance, cf 

represents the fixed cost for substations and etc., and ρ represents the 

array density of turbines.  

 Operation and maintenance (O&M) cost of offshore wind turbines 

increase with the decreasing accessibility to nearest harbor. An 

empirical function was developed and used in this study. 

   5041515929.0 2

hh ddOM                                                              (7) 

where OM represents the annual operation and maintenance cost in 

€/MW/km
2
, dh represents the nearest distance to harbor, and and ρ 

represents the array density of turbines. The correlation coefficient is 

approximately 0.96. 

offshore wind energy potential 

 technological potential 

The top two maps of Fig.1 display average wind speed maps at the heights of 

10 and 90m above sea level. According to world classes of wind power at 10m, 

approximately 96% of areas in China’s EEZ have appreciable wind power 

potential greater than class 5(>6m/s), and nearly 60% of them belong to the 

highest class of wind power (>7m/s). The southeast part of EEZ between 22°N 

and 28°N have higher wind speeds(>10m/s at 90m height), compared with the 

north part of EEZ between 30°N and 40°N, at 7.5-9m/s. Moderately high winds 

are found at the southern  China below 22°N, around Guangdong and Hainan. 

The power density, shown in the lower left in Fig.1, averages between 4500-

7000kWh/m
2
 for the southeast domain and 2500-3500kWh/m

2
 for northern and 

southern China. In the lower right of Fig.1, we plot the annual output of 5M 

turbine, which indicates the average power at any location within the EEZ if a 

turbine was placed there. The plot identifies the southeast shelf (between 22°N 

and 28°N) as the best areas for offshore wind power development. Around the 
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southern part of Guangdong and Hainan, an average output of 13,000MWh is 

expected. Northern coast of China, including Jiangsu, Shandong and Bohai 

Bay, yields 10,000MWh per year. However, as the large-scale exploitation of 

offshore wind power, extra space between offshore wind farms is needed in 

order to avoid wake effects. Considering the array density of turbines as 

0.24MW/km
2
, only 25% of the annual outputs illustrated in Fig.1 are realistic. 

 

When assessing wind energy potential in 2020 and 2030, it is necessary to 

make projections with respect to the technological development of wind 

turbines. These include factors such as rated power, rotor diameter, hub height, 

capacity factor and availability (Table 1). Parameters of present wind turbines 

are based on the prototype of Repower Systems 5MW. Because of economics 

of scale, turbine sizes may increase further. EWEA assumes an average wind 

turbine size of 10MW with a rotor diameter of around 150m (EEA, 2009). It is 

expected that large offshore wind turbines will have a possible tower height 

less than equal to the rotor diameter because of reduced wind speed disturbance. 

Installing the assumed 5M wind turbines within the total 877,019km
2
 of EEZs, 

the annual yield from wind energy amounts to 4022TWh, which is 

approximately 1.2 times of the total electricity consumption in 2008. Or if 

installing the 8M and 10M turbines within the EEZs, technological potential of 

offshore wind power will reach 4965TWh in 2020 and 5700TWh in 2030. 

spatially constrained potential 

As with land use, there are competing demands for the ocean use. Some 

competing demands, such as designated shipping lanes and submarine cables, 

are protected by state laws, definitely excluding offshore wind turbine 

placement. Others, such as distance needed to minimize visual impact from 

beaches, are flexible, and cannot be conclusively determined by the planners. 

In this paper, we divide various kinds of competing demands into hard and soft 

groups of constraints. 

 

Hard constraints for offshore wind farms include designated shipping lanes, 

submarine cables, natural reserves and military zones. According to the UN 

Convention on the Law of the Sea (UNCLOS), the coastal state may establish 

reasonable safety zones around the artificial islands, installations and structures 

in order to ensure the safety navigation. 2 nautical miles is deemed as a safe 

boundary for shipping in single direction, and therefore 4 nautical miles 

buffered is chosen in this paper considering bidirectional navigation. 

Submarine Cables and Pipelines Protection Provisions of the People’s Republic 

of China state that 500m buffer around submarine cables and pipelines should 

be set within wide sea areas, 100m buffer should be set within narrow sea areas 

such as bays, and 50m buffer should be set in harbor. Until now the State 

Council of the People’s Republic of China has approved 32 national marine 

nature reserves covering 22831km
2
, but most of them locate on coastal areas. 

Offshore oil & gas exploration areas and military zones are not considered in 

this study due to the unavailability of data. 
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This paper considers visual impacts and migratory path of an endangered bird 

as soft constraints for offshore wind development. China’s coastline is 

approximately 18,400km, which covers a great diversity of ecosystems such as 

coast, estuary, coastal wetland, island, mangrove, coral reef and etc. A majority 

of coastal cities are places of interests, and they are famous for either the 

golden beach, or the special natural landscape, or the local cultural heritage. 

Whether erecting offshore wind turbines will affect the local tourism industry 

and incur the opposition of the residents becomes a realistic problem. Current 

research suggests that visual impact of offshore wind turbines declined with 

distance in all atmosphere and lighting conditions (except the stormy sky). At 4 

km distance the rate of negative responses was 70.4%, dropping to 46.4% at 8 

km and 36.2% at 12km (Bishop & Miller, 2007). On the other hand, erecting 

offshore wind turbines might have detrimental impact on migrating birds. Here 

we consider the Black-faced Spoonbill (Platalea minor), a rare bird which can 

be seen only in East Asia. Currently, it exists only a few small rocky islands off 

the west coast of North Korea, with three major wintering sites at Hong Kong, 

Taiwan and Vietnam. Since the flight path from North Korea to Taiwan across 

the potential sites of offshore wind farms in China, a buffer zone of 5km may 

reduce the risk of collisions (Yue & Yang, 2009). 

 

The individual exclusion areas shown in Fig.2 are quantitatively summarized in 

Table 2. It can be used to examine the areas that were excluded for any one use. 

For example, the designated shipping lanes we identified would exclude 

202,828km
2 

or 23.1% of the total EEZs. The submarine cable and bird path 

would exclude 8564km
2
 and 7149km

2
 respectively, but more than half of them 

locate in deep sea regions (above 50m sea depths), where are not suitable for 

building offshore wind farms under current technological conditions. The 

visual exclusion have an overwhelming influence in shallow waters (below 

20m sea depths), where are considered as the best location for offshore wind 

farms. Considering differing distances of 4km, 8km and 12km, visual 

exclusion areas would reach a percentage as high as 17%, 34% and 50% of the 

total shallow waters. Table 3 gives the total areas before considering any 

exclusion and the available area after removing all other exclusion but no 

visual exclusion, and the available areas with three increasing distances of 

visual exclusion. Without visual exclusion, potential available areas are 

668,062km
2
, taking up 76.2% of the total 877,019km

2
. As the distances of 

visual exclusion increase, the sharing of available areas drops to 65.2%. What’s 

more, the effect is more pronounced in the 0-20m depths areas of greatest 

current attention. 

economic analysis 

On the basis of above GIS-based cost model, spatial distributions of levelised 

production cost for offshore wind energy within the EEZs is illustrated in Fig.3. 

The southeast shelf (between 22°N and 28°N), where enjoys the highest wind 

speed and power output, is also the cheapest areas for developing offshore 

wind farms. The technical potential of the cheapest offshore wind power, 

whose price range from 0.015€/kWh to 0.035€/kWh, counts to 34GW. 
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Available energy which costs between 0.035€/kWh and 0.055€/kWh, mainly 

located within the shallow water of Zhejiang province and the northern part of 

Guangdong province. The technical potential of this category is 78GW, about 

17% of total available energy under current level of technology. 

Approximately 31% of the technical potential have a price of 0.055-

0.075€/kWh, while 23% of the total potential costs from 0.075€/kWh to 

0.095€/kWh. Most part of these potential locate in the deeper water of Zhejiang 

province and southern part of Guangdong province. The northern shelf and the 

deeper water of Guangdong province has the most expensive offshore wind 

energy, which costs above 0.095€/kWh. The technical potential of this 

category reaches 100GW, about 22% of the total technical potential.  

 

Currently there is no policy on the price of on-grid offshore wind energy in 

China, but the fixed price of on-grid wind power can be used as a reference. In 

July of 2009, the National Development and Reform Commission (the nation’s 

highest level of official planning organization), has set on-grid wind power 

price at about 0.051€/kWh, 0.054€/kWh, 0.058€/kWh and 0.061€/kWh in 

various regions. Coastal provinces, where are not rich in onshore wind resource 

as other regions, have the highest on-grid price of 0.061€/kWh. Comparing to 

the criteria, potential price under 0.055€/kWh can be considered as 

economically competitive potential. Furthermore, proper subsidy will make 

potential price from 0.055€/kWh to 0.095€/kWh become economically 

competitive. However, those have a price above 0.095€/kWh might not be 

economically feasible in a short run. 
 

Taking constraints into consideration, four scenarios of spatial constraints are 

developed and corresponding practical potential and cost are shown in Fig.4. 

Without visual exclusion, the annual amount of practical available energy 

reduces to 3064TWh, about 76% of technological potential. Available energy 

costs under 0.055€/kWh reduces by 27%, while 50% of energy costs above 

0.095€/kWh are unavailable. Economically competitive potential equals to 

82GW, taking up 24% of the practical potential of offshore wind energy. On 

the other hand, visual exclusion will further reduce practical potential of 

offshore wind power. For example, only 72%, 69% and 65% of technological 

potential are available under the exclusive distances of 4km, 8km and 12km 

respectively. Furthermore, the effects of visual exclusion are most apparent in 

near shore areas, where are places capable of providing cheap energy. For 

example, the amounts of available energy pricing under 0.055€/kWh reduce 

from 974TWh to 617TWh, 524TWh and 433TWh in increasing distances of 

visual exclusion.  
 

The model also allows further sensitivity studies to investigate the influence of 

geographical elements on the cost of energy, and provides guides for location 

choice of future offshore wind farms in China’s EEZs. Distance to harbor 

contributes most in influencing energy cost. Fig.5 shows clearly that increasing 

the distance between offshore wind farms and harbors raises the cost of energy. 

This is due to the increasing costs of construction and operation and 

maintenance (O&M) of offshore wind farms. During the periods of 
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construction and O&M, the ships have to make a number of trips between the 

site and harbor frequently. This travel period is costly and therefore the closer 

an offshore site is to an industrial port facility, the less expensive installation 

and O&M will be. Furthermore, the further distance to harbor also indicates 

longer transmission cables and greater transmission losses. An opposite trend is 

visible in Fig.6 where increasing wind speed reduces the costs of energy, 

owing to an increasing energy production. Experiences suggest that increasing 

sea depths increase the price of foundation by making cheaper gravity and 

monopile foundations impractical and requiring the use of more expensive 

jacketed and floating foundations. However, sea depth doesn’t play an 

important role in determining costs within most part of China’s EEZs. The 

reason is 54% areas of China’s EEZs are shallow waters with the sea depths 

less than 50m. In addition to geographical and meteorological factors, interest 

rate influences the cost of energy. The general trend is that increasing interest 

rate raises the cost of energy

Conclusions  

 Leaving aside some of environmental, social and economic 

considerations, China’s raw wind energy potential is huge. Current 

technological conditions suggest that it will equivalent to 459GW, 1.2 

times of total electricity demands in 2008. In combinations with future 

turbine technology, energy potential of offshore wind power will reach 

567GW in 2020 and 651GW in 2030. This confirms that offshore wind 

power would play an important role in China’s renewable energy 

system. 

 Spatial constraints have a great impact on technological potential. The 

designated shipping lanes, which exclude about 23% of the total EEZs, 

are identified as a major constraint for developing offshore wind farms. 

Without visual exclusions, the practical potential equals to 348GW in 

2020. However, planners need to take careful tradeoff between visual 

exclusion and offshore wind farms. As the distances of visual exclusion 

increase, the sharing of available areas for offshore wind farms declines 

sharply. Furthermore, the effect is more pronounced in economically 

feasible sites. 

 At least 24% of the practical potential, about 87GW, is cost-effective 

for meeting future domestic energy demands. If taking proper subsidy 

into account, economically feasible potential will increase to 303GW, 

about 87% of the total electricity demand in 2008. In other words, 

China’s future sustainable energy system will be a combination of 

various technical alternatives. 

 Southeast of China including Fujian, northern Guangdong and southern 

Zhejiang are good sites for developing offshore wind energy. However, 

for investment of offshore wind farms on a specific site, detailed 

investigations of local wind data and topography conditions would be 

necessary in order to ensure investment effectiveness.   

 The sensitivity analysis illustrates that wind speed alone is not 

sufficient as a criterion for deciding sites for offshore wind farms. 
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Considering that most part of China’s EEZs is shallow waters, sea depth 

doesn’t play an important role in influencing cost as well. In contrast, 

distance to harbor is the most important factor to consider when making 

the location choice. In addition to geographical and meteorological 

factors, interest rate also influences the cost of energy. The general 

trend is that increasing interest rate raises the cost of energy.  
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Table 1 Major parameters of present and future wind turbines 

Source: EEA, 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 2010 2020 2030 

Rated power (MW) 5 8 10 

Rotor diameter (m) 126 140 150 

Hub height (m) 90 105 120 

Capacity factor (%) 44 47 47 

Availability (%) 90 90 90 
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Table 2 Areas of each individual exclusion (areas in km
2
) 

 

Sea depths 0-20m 20-50m 50-100m >100m Total 

Shipping lanes 22,006 126,919 34,461 9,858 202,828 

Submarine cables 1,026 2,307 3,973 1,258 8,563 

Bird migratory path 

Visual exclusion from 4km 

Visual exclusion from 8km 

1,911 

32,980 

64,910 

1,577 

0 

0 

3,661 

0 

0 

0 

0 

0 

7,149 

32,980 

64,910 

Visual exclusion from 

12km 

96,493 0 0 0 96,493 
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Table 3 Available area in total and after removing each assumption of 

exclusion (areas in km
2
) 

 

Sea depths 0-20m 20-50m 50-100m >100m Total 

Total areas(no exclusion) 192,951 280,319 303,882 99,867 877,019 

Available area, with no 

visual exclusion 

168,008 149,516 261,787 88,751 668,062 

Available area, with 4km 

visual exclusion 

135,028 149,516 261,787 88,751 635,082 

Available area, with 8km 

visual exclusion 

103,098 149,516 261,787 88,751 603,152 

Available area, with 12km 

visual exclusion 

71,515 149,516 261,787 88,751 571,569 
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Figure 1 Spatial distribution of wind characteristics in China’s EEZ 

(Top left: wind speed at 10m; Top right: wind speed at 90m; Bottom left: wind 

power density; Bottom right: 5M mean turbine output power) 
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Figure 2 Practical offshore wind potential under constraints 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

Figure 3 Spatial distribution of levelised production cost 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

Figure 4 Cost supply curves for available energy under different scenarios 
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Figure 5 Influence of distance to harbor on energy cost 
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Figure 6 Influence of average wind speed on energy cost 

 
 

 


